

5G INNOVAZIONE DIGITALE E SMART CITY

Prof. Michele Luglio

Seminari Velletri 2030 "Le vie della Scienza" GoToWebinar – 12 maggio 2020

Smart

- Astuto
- Brillante
- Intelligente
- **Fico** = Nel linguaggio giovanile, di persona abile, astuta, che si fa ammirare per qualche sua particolare capacità, o anche elegante, di bella presenza: quant sei fico!; è un ragazzo veramente fico!; anche come s. m.: il tuo amico è propric fico

Smart City: Obbiettivi

Aumentare efficienza

• Diminuire i costi

Migliorare la qualità della vita

Settori interessati

Sanità

Ambiente (inquinamento e rifiuti)

Lavoro

- Edilizia (ecoquartieri)
- Trasporti
- Emergenza e Sicurezza (Safety&Security)

Logistica

- Pubblica amministrazione
- - Informazione Energia (consumi e inquinamento)
- Giustizia

- Commercio
- Istruzione
- Turismo

Sport

- Hobby e tempo libero
- Approvvigionamenti essenziali

Modalità di attuazione

Uso di tecnologie

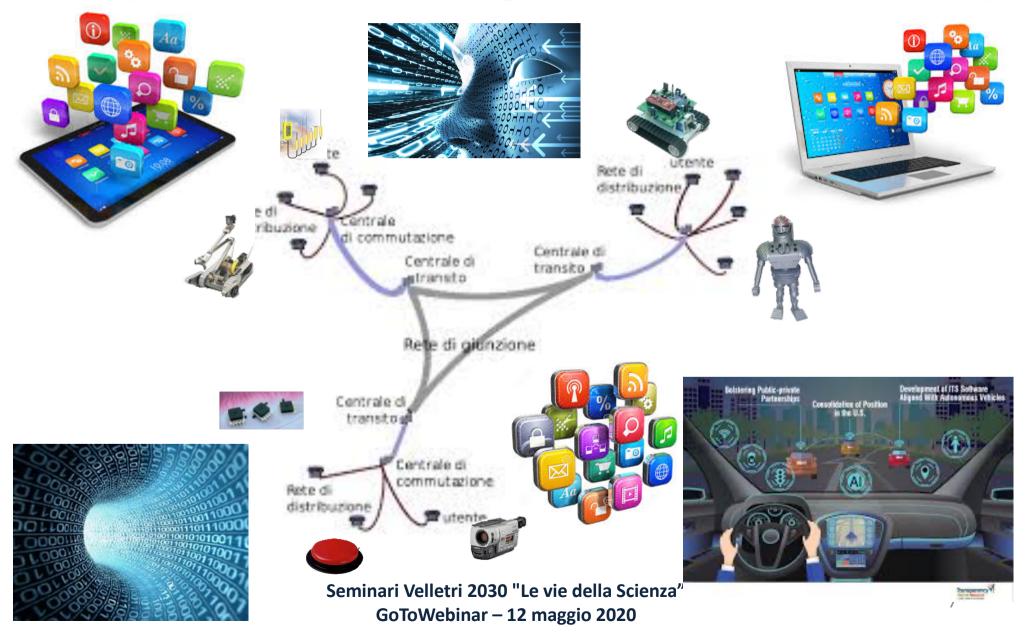
- elettroniche,

- informatiche e

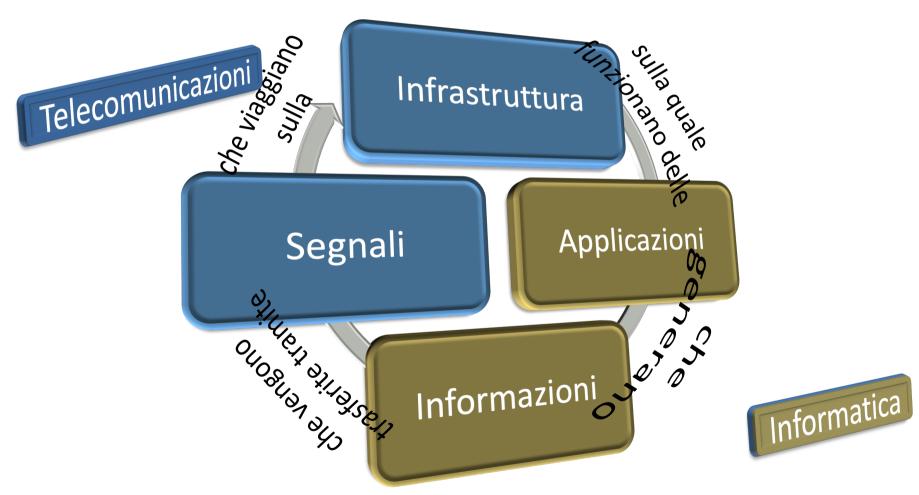
- di telecomunicazioni

Ma è sufficiente ???????????

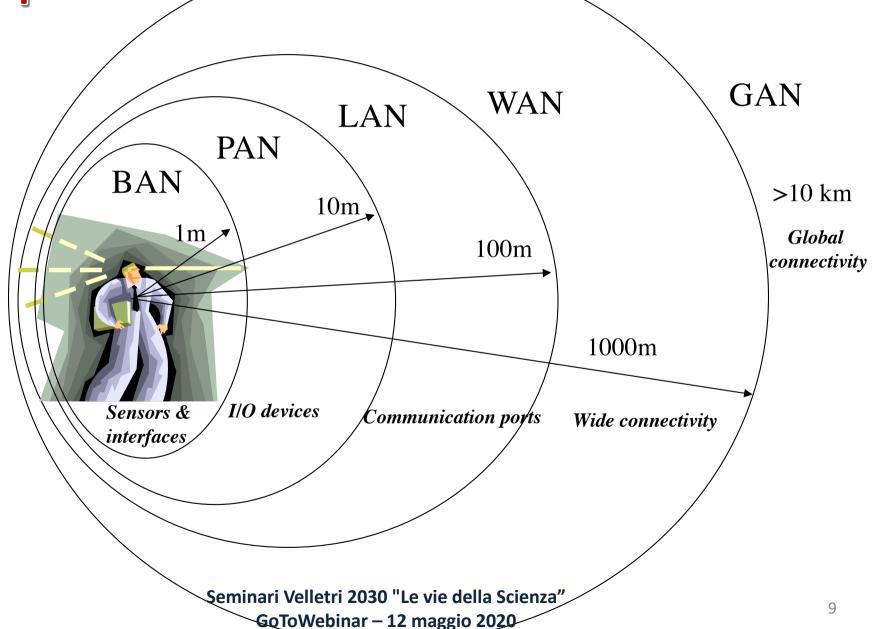
DECALOGO delle Smart Cities


- 1. La tecnologia ICT è fondamentale ma non basta
- 2. La tecnologia deve sempre facilitare e talvolta sostituire
- 3. Identificare bene i requisiti e affrontare il ciclo di vita del sistema con metodologie rigorose e adeguate
- 4. La formazione è indispensabile
- 5. Non tutte le nostre attività hanno bisogno di tecnologia per essere smart (alcune già lo sono)
- 6. Le soluzioni devono essere standard
- 7. Attenzione alla riservatezza personale!!!!!!
- 8. La sicurezza dei dati va curata dall'inizio
- Dall'uso di strumenti posseduti alla fruizione di un servizio condiviso
- 10. Prima di sviluppare una soluzione per un problema provare ad eliminarlo (la mobilità si migliora anche riducendo l'esigonza)elletri 2030 "Le vie della Scienza"

 GoToWebinar 12 maggio 2020


Componenti tecnologiche della Smart City

Internet

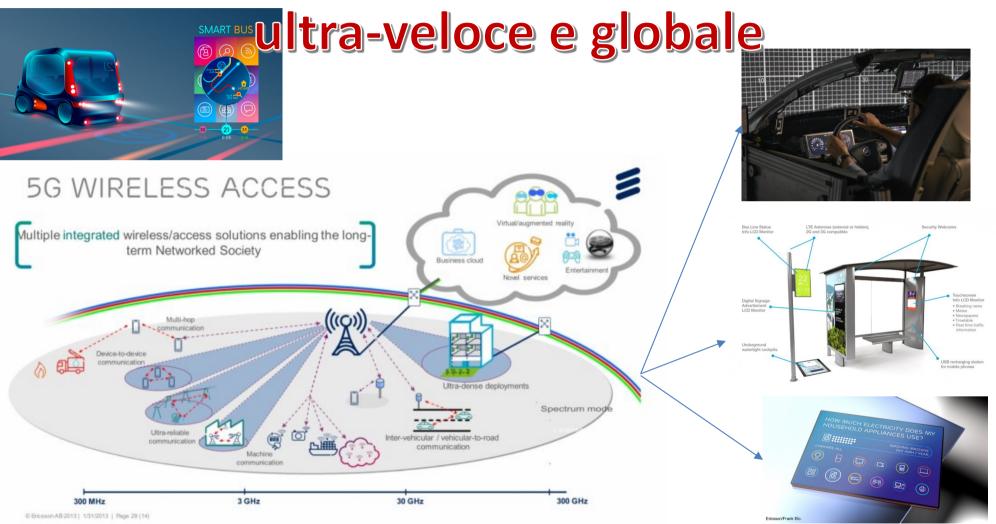


Seminari Velletri 2030 "Le vie della Scienza" GoToWebinar – 12 maggio 2020

Lo spazio della comunicazione senza fili

Il 5G sta arrivando

Generation	Technology				
1	Analogue				
2	Digital, circuit switching, narrow band (GSM)				
3	Digital, circuit and IP packet switching, wide band (UMTS)				
4	Larger bandwidth and data rate (LTE)				
5	Larger bandwidth, SDN, NFV, lower power consumption, billions of connections				
	Changes				


- 1. compute and storage services provision
 - distributed computer, with processes and applications dynamically created, moved, deleted
- 2. explosion of IoT and M2M communications
 - effective authentication, naming, addressing, routing and related functions for a vast number and kind of terminals
- 3. vertical sectors (Automotive, Industry 4.0, Entertainment, Energy and E-health)
 - transport and computing services as virtual distributed computers under complex SLAs

- 1000 times higher mobile data volume per geographical area.
- 10 to 100 times more connected devices.
- 10 to 100 times higher typical user data rate.
- 10 times lower energy consumption.
- End-to-End latency of < 5ms.
- Location precision < 3m
- Mobile speed up to 500 km/h
- Ubiquitous 5G access including low density areas.

5G tecnologia di accesso senza filo

Architettura 5G

Miti e realtà

Le campagne sperimentali e le prime realizzazioni riguardano lo strato fisico Zero latency: la fisica non è stata rivoluzionata

Cambio di prospettiva: il punto di partenza è il servizio e non l'infrastruttura

Categorie e casi d'uso

- Enhanced Mobile Broadband (eMBB)
- Massive Machine Type Communications (mMTC)
- Ultra Reliable and Low Latency Communications (URLLC)

Requirement	Required value				
Latency, user plane	1 ms for URLLC				
Latency, control plane	20 ms				
Connection density	1 000 000 devices / km ²				
Reliability	99.999% success rate within 1 ms				
Mobility interruption time	0 ms				
Throughput (peak)	20 Gbit/s (DL) - 10 Gbit/s (UL)				
Mobility	500 km/h (0.45 bit/s/Hz)				
Latency, user plane	4 ms for eMBB				

URLLC requirement mMTC requirement eMBB requirement

Allocazione dello spe

IMPORTO 700 MHz blocco riservato ILIAD ITALIA S.P.A. € 676.472.792,00 700 MHz blocco generico VODAFONE ITALIA S.P.A. € 345.000.000,00 700 MHz blocco generico TELECOM ITALIA S.P.A. € 340.100.000,00 700 MHz blocco generico TELECOM ITALIA S.P.A. € 340.100.000,00 700 MHz blocco generico VODAFONE ITALIA S.P.A. € 338.236.396,00 3700 MHz blocco specifico (80 MHz) TELECOM ITALIA S.P.A. € 1.694.000.000,00 3700 MHz blocco generico (80 MHz) VODAFONE ITALIA S.P.A. € 1.685.000.000,00 3700 MHz blocco generico (20 MHz) WIND TRE S.P.A. € 483.920.000,00 3700 MHz blocco generico (20 MHz) ILIAD ITALIA S.P.A. € 483.900.000,00 26 GHz blocco generico TELECOM ITALIA S.P.A. € 33.020.000,00 26 GHz blocco generico ILIAD ITALIA S.P.A. € 32.900.000,00 26 GHz blocco generico FASTWEB S.P.A. € 32.600.000,00 WIND TRE S.P.A. € 32.586.535,00 VODAFONE ITALIA S.P.A. € 32.586.535,00

FR1 (450MHz – 6GHz)	FR2 (24.25GHz – 52.6GHz)						26 GHz blocco generico 26 GHz blocco generico	
1.427 1.518 3.4 3.6 4.495 4.8 0.091 0.2	24.25 27.5 31.8 33.4 3.25 1.6	37 40.5 42.5 43.5 4 3.5 2 1	1.5 3 2.2	66	76 10	81	86 (GHz)	
1.4GHz 3.5GHz 4.5GHz	20GHz 30GHz	40GHz	50GHz	60GHz	70GHz	80GHz	90 дн	
[IMT Spectrum] (1.427-1.518), (3.4-3.6)	[WRC-19 Candidates] (24.25-2	7.5), (31.8-33.4), (37-4	40.5), (40.5-42.5), (42.5	i-43.5), (45.5-47), (47-4	17.2), (47.2-50.2),	(50.4-52.6), (66-76)), (81-86)GHz	

Totale € 6.550.422.258

USA · 27.5 - 28.35GHz

 $\cdot 3.4 - 3.8 GHz$

Europe

China

Japan

· 3.6 - 4.2GHz

Korea

· 3.4 – 3.7GHz

· 26.5 – 29.5GHz

n77 3.3 - 4.2 GHz n78 3.3 - 3.8 GHz

n79 4.4 - 5.0 GHz

n257 26.5 - 29.5 GHz

n261

n258 24.25 - 27.5 GHz n260 37 - 40 GHz

27.5 - 28.35 GHz

· 38.6 - 40GHz

· 37 - 38.6GHz

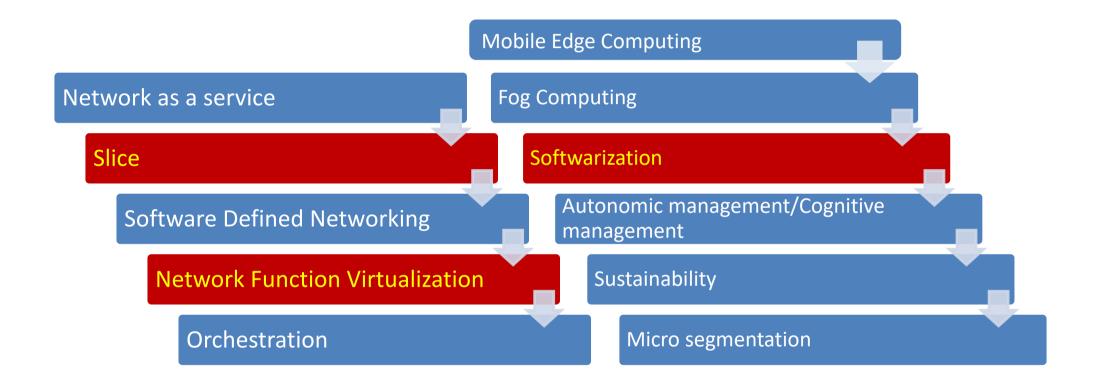
· 37 – 43.5 GHz

· 24.25 – 27.5GHz

· 24.25 – 27.5GHz

· 4.4 - 4.9GHz · 27.5 - 29.5GHz

· 37 – 42.5GHz


· 3.3 – 3.6GHz

· 4.8 - 5.0GHz

Sviluppo del 5G: concetti chiave

Dispiegamento del 5G: calendario

2025 scadenza per coprire i grandi centri urbani e le infrastrutture di trasporto

Seminari Velletri 2030 "Le vie della Scienza" GoToWebinar – 12 maggio 2020

Perché usare il satellite (oggi-domani)

Costi indipendenti dalla distanza (nell'ambito di un satellite)

Caratteristiche di raccolta e di diffusione



Particolarmente adatto e economicamente conveniente per connessioni punto multipunto

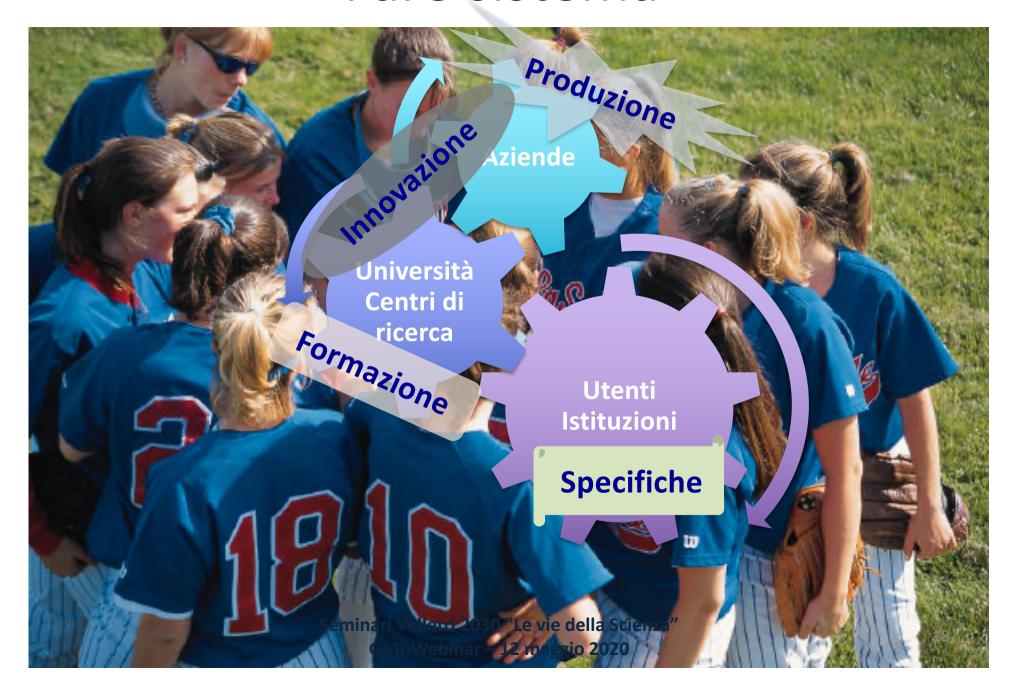
Da essere un problema a causa del ritardo

Insostituibile in aree senza o con scarse infrastrutture

Oltrepassa reti terrestri molto congestionate

Con stessa infrastruttura sia servizi fissi che mobili

- Dirompente per alimentare nodi CDN
- Efficiente per distribuire chiavi di sicurezza


a essere l'elemento che può contribuire significativamente per ottenere "zero latency" e per gestire con efficienza la questione multidominio

Fare sistema

Conclusioni

- 5G infrastruttura sulla quale verranno progettati e dispiegati i servizi e le applicazioni di Smart City a partire da domani o dopodomani
- 5G offre la capacità di trasmissione e la flessibilità di gestione della rete idonee per adattarsi ai requisiti dei servizi
- L'inversione della logica Infrastruttura-Servizi è fondamentale
- Connubbio indispensabile ed imprescindibile
- 5G allunga la vita delle Smart City